sábado, 26 de junio de 2010

AMPLIFICADOR SUMADOR




Esta configuración tiene la siguiente estructura:















La salida de este amplificador es proporcional a la suma de las señales de entrada. Dado que V-=0 por ser igual a V+ que sí es igual a cero, las intensidades que circulan por cada rama son independientes de las demás y no se produce redistribución de intensidad alguna. Con ello la intensidad total que atraviesa R2 será la suma de las intensidades de cada una de las ramas de entrada.




La tensión de salida Vo será


Haciendo que R11 = R12 = ..... = R1N = R2 se consigue que






Lo normal sería obtener una suma ponderada de manera que a cada término se le puede dar el peso que nos interese.

AMPLIFICADOR DIFERENCIAL




Se trata de una configuración con dos entradas, en la que se amplifica la diferencia de potencial entre ambas. Para obtener las expresiones correspondientes a esta configuración tendremos en cuenta que su comportamiento es en todo momento lineal. Por ello, aplicaremos el teorema de superposición. Primero supondremos que una de las tensiones de entrada es nula y obtendremos la salida correspondiente, a continuación supondremos que la otra tensión es nula y también obtendremos la expresión de Vo, la solución completa se consigue mediante la suma de ambas soluciones.



















Analizamos el circuito por superposición dividiéndolo en los dos subcircuitos siguientes:


Primer caso: V2=0.

En este caso al considerar que V2 es igual a cero obtenemos que R1 y R2 están en paralelo con lo cual el circuito tomaría la forma:














Sabemos que la intensidad I que atraviesa la resistencia equivalente debe ser nula, por lo que V+=0. Con esto nuestro circuito se convierte en un circuito amplificador inversor, que ya conocemos y por tanto podemos decir que







Segundo caso: V1=0


















Ahora el circuito es un amplificador NO inversor con la única diferencia de que en nuestro caso no aplicamos una tensión directamente sobre V+. Por ello, debemos buscar primero el valor de V+.

Como sabemos que I=0, por lo tanto








sustituyendo en la expresión de Vo del amplificador NO inversor que ya conocemos obtenemos





La expresión de Vototal aplicando el teorema de superposición será




En cuanto a la ganancia G será





Las expresiones que hemos obtenido anteriormente se deben en parte al hecho de disponer de dos resistencias R1 exactamente iguales entre sí y lo mismo ocurre con las R2. Por ello se dice que las R1 deben estar apareadas así como las dos resistencias R2, lo que quiere decir que deben ser exactamente iguales.
Un tema importante a tener en cuenta en la utilización de este dispositivo es el de la impedancia que ofrece al exterior. Así, si colocamos los extremos de una pila en las entradas del circuito, debe de producir en la salida una señal amplificada de la entrada. Sin embargo esto no siempre es así.













En la figura de la izquierda mostramos cómo se conectaría la pila al circuito y a la derecha se muestra el esquema correspondiente formado por la pila ideal, una resistencia interna de la misma R0 y la resistencia de entrada Ri que muestra nuestro circuito al exterior. En caso de que R0 sea comparable a Ri caerá una tensión importante en los extremos de R0 y la tensión en los extremos de Ri (la que el circuito tomará como señal de entrada) será muy diferente de la nominal de la pila. Por el contrario en el caso de que R0sea muy pequeña frente a Ri casi toda la tensión caerá en Ri y por tanto se parecerá mucho a la tensión nominal de la pila.
Vamos a calcular la resistencia de entrada de nuestro circuito.

















Estudiando la malla señalada en la figura...



en donde el término (V--V+) es nulo al considerar el caso ideal.
La resistencia de entrada será





expresión que nos indica que nuestra resistencia de entrada no debe ser muy elevada. Si recordamos que G=R2/R1 y suponemos que G es muy grande, realmente estamos diciendo que R2 debe ser muy grande con respecto a R1pero eso no indica que R1 sea grande. En muchos casos R1puede alcanzar valores de 103, 104 e incluso más pero esos valores no son desde luego infinito. Para evitar los problemas presentados arriba y que nuestro circuito siga funcionando como se pretende colocamos un SEGUIDOR DE TENSIÓN a cada una de las entradas de nuestro circuito, como se muestra en la figura siguiente.


















Dado que la intensidad de entrada en los dos seguidores de tensión es nula, la impedancia de entrada que ofrece el circuito será infinita. Este tipo de amplificadores forman la base principal de los amplificadores utilizados en los instrumentos de medidas.



AMPLIFICADOR DIFERENCIADOR

















Este dispositivo nos permite obtener la derivada de la señal de entrada. En el caso general la tensión de entrada variará con el tiempo Vi= Vi(t). La principal diferencia que se observa en este circuito es la presencia de un condensador de capacidad constante C. Como se sabe la carga Q que almacena un condensador es proporcional a su capacidad C y a la diferencia de potencial V a la que estén sometidos las armaduras de éste (Q=CV). Es fácil entender que si la tensión varía con el tiempo y la capacidad del condensador es constante, la carga que éste almacena también variará con el tiempo, Q= Q(t).






Está claro también que el primer miembro de esta igualdad representa el concepto de intensidad




. Además la diferencia de potencial en los extremos del condensador es Vi ya que una de sus armaduras tiene un potencial Vi y la otra, tiene un potencial cero ya que V-=0 al ser V+=0. La señal de salida Vo se obtiene sabiendo que Vo = -IR , sustituyendo los valores obtenidos queda





Como se puede ver en esta expresión Vo es proporcional a la derivada con respecto al tiempo de la señal de entrada. La constante de proporcionalidad RC es la conocida constante de tiempo. Para la utilización de este dispositivo debemos "vaciar" previamente el condensador de toda carga, para ello producimos un cortocircuito entre sus armaduras. A continuación, deshaciendo ese cortocircuito, dejamos que el sistema evolucione durante el tiempo deseado obteniendo su derivada a la salida.
Con este dispositivo se pueden hacer muchas combinaciones, así, por ejemplo, podemos conseguir un circuito que obtenga la derivada de una señal determinada y además le sume una segunda señal, con el esquema siguiente















AMPLIFICADOR INTEGRADOR





Para conseguir un dispositivo integrador intercambiamos la resistencia y el condensador de un circuito diferenciador según el esquema siguiente.
















Como ya vimos antes I=C dVc/dt despejando dVc será






integrando en ambos miembros...






la intensidad I que "atraviesa" el condensador será la misma que la intensidad I que atraviesa la resistencia R ya que al ser V=0 la intensidad hacia ese terminal V-es nula. Por ello, I=Vi/R sustituyendo en la expresión de Vo tendremos...






expresión que nos indica que la señal de salida de este circuito es proporcional a la integral de la señal de entrada. En el caso particular en el cual Vi(t) fuera constante en el tiempo ese término saldría de la integral y la expresión tomaría la forma





expresión que muestra que la salida sería una recta con una determinada pendiente. Esta característica es muy útil, por ejemplo, para utilizar estos dispositivos en el diseño de generadores de señales. Así podemos conseguir una señal triangular de salida como respuesta a una señal cuadrada de entrada.